24 research outputs found

    Existence of families of spacetimes with a Newtonian limit

    Get PDF
    J\"urgen Ehlers developed \emph{frame theory} to better understand the relationship between general relativity and Newtonian gravity. Frame theory contains a parameter λ\lambda, which can be thought of as 1/c21/c^2, where cc is the speed of light. By construction, frame theory is equivalent to general relativity for λ>0\lambda >0, and reduces to Newtonian gravity for λ=0\lambda =0. Moreover, by setting \ep=\sqrt{\lambda}, frame theory provides a framework to study the Newtonian limit \ep \searrow 0 (i.e. cc\to \infty). A number of ideas relating to frame theory that were introduced by J\"urgen have subsequently found important applications to the rigorous study of both the Newtonian limit and post-Newtonian expansions. In this article, we review frame theory and discuss, in a non-technical fashion, some of the rigorous results on the Newtonian limit and post-Newtonian expansions that have followed from J\"urgen's work

    Knowledge-based energy functions for computational studies of proteins

    Full text link
    This chapter discusses theoretical framework and methods for developing knowledge-based potential functions essential for protein structure prediction, protein-protein interaction, and protein sequence design. We discuss in some details about the Miyazawa-Jernigan contact statistical potential, distance-dependent statistical potentials, as well as geometric statistical potentials. We also describe a geometric model for developing both linear and non-linear potential functions by optimization. Applications of knowledge-based potential functions in protein-decoy discrimination, in protein-protein interactions, and in protein design are then described. Several issues of knowledge-based potential functions are finally discussed.Comment: 57 pages, 6 figures. To be published in a book by Springe

    Multidimensional Conservation Laws: Overview, Problems, and Perspective

    Full text link
    Some of recent important developments are overviewed, several longstanding open problems are discussed, and a perspective is presented for the mathematical theory of multidimensional conservation laws. Some basic features and phenomena of multidimensional hyperbolic conservation laws are revealed, and some samples of multidimensional systems/models and related important problems are presented and analyzed with emphasis on the prototypes that have been solved or may be expected to be solved rigorously at least for some cases. In particular, multidimensional steady supersonic problems and transonic problems, shock reflection-diffraction problems, and related effective nonlinear approaches are analyzed. A theory of divergence-measure vector fields and related analytical frameworks for the analysis of entropy solutions are discussed.Comment: 43 pages, 3 figure

    Non-existence and uniqueness results for supercritical semilinear elliptic equations

    Full text link
    Non-existence and uniqueness results are proved for several local and non-local supercritical bifurcation problems involving a semilinear elliptic equation depending on a parameter. The domain is star-shaped but no other symmetry assumption is required. Uniqueness holds when the bifurcation parameter is in a certain range. Our approach can be seen, in some cases, as an extension of non-existence results for non-trivial solutions. It is based on Rellich-Pohozaev type estimates. Semilinear elliptic equations naturally arise in many applications, for instance in astrophysics, hydrodynamics or thermodynamics. We simplify the proof of earlier results by K. Schmitt and R. Schaaf in the so-called local multiplicative case, extend them to the case of a non-local dependence on the bifurcation parameter and to the additive case, both in local and non-local settings.Comment: Annales Henri Poincar\'e (2009) to appea

    Entropy Stable Finite Volume Approximations for Ideal Magnetohydrodynamics

    Get PDF
    This article serves as a summary outlining the mathematical entropy analysis of the ideal magnetohydrodynamic (MHD) equations. We select the ideal MHD equations as they are particularly useful for mathematically modeling a wide variety of magnetized fluids. In order to be self-contained we first motivate the physical properties of a magnetic fluid and how it should behave under the laws of thermodynamics. Next, we introduce a mathematical model built from hyperbolic partial differential equations (PDEs) that translate physical laws into mathematical equations. After an overview of the continuous analysis, we thoroughly describe the derivation of a numerical approximation of the ideal MHD system that remains consistent to the continuous thermodynamic principles. The derivation of the method and the theorems contained within serve as the bulk of the review article. We demonstrate that the derived numerical approximation retains the correct entropic properties of the continuous model and show its applicability to a variety of standard numerical test cases for MHD schemes. We close with our conclusions and a brief discussion on future work in the area of entropy consistent numerical methods and the modeling of plasmas
    corecore